Antimony-doped Tin(II) Sulfide Thin Films

نویسندگان

  • Rupak Chakraborty
  • Sang Bok Kim
  • Steven M. Heald
  • Tonio Buonassisi
  • Roy G. Gordon
  • Prasert Sinsermsuksakul
چکیده

Thin-film solar cells made from earth-abundant, inexpensive, and non-toxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin monosulfide (SnS) is a promising candidate for making absorber layers in scalable, inexpensive, and non-toxic solar cells. SnS has always been observed to be a p-type semiconductor. Doping SnS to form an n-type semiconductor would permit the construction of solar cells with p-n homojunctions. This paper reports doping SnS films with antimony, a potential n-type dopant. Small amounts of antimony (~1%) were found to greatly increase the electrical resistance of the SnS. The resulting intrinsic SnS(Sb) films could be used for the insulating layer in a p-i-n design for solar cells. Higher concentrations (~5%) of antimony did not convert the SnS(Sb) to low-resistivity n-type conductivity, but instead the films retain such a high resistance that the conductivity type could not be determined. Extended X-ray absorption fine structure analysis reveals that the highly doped films contain precipitates of a secondary phase that has chemical bonds characteristic of metallic antimony, rather than the antimony-sulfur bonds found in films with lower concentrations of antimony.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Pure and Antimony Doped SnO2 Thin Films Prepared by the Sol-Gel Technique

Pure and antimony doped SnO2 thin films have been prepared by the sol-gel dip coating technique on glass substrate using starting material SnCl2.2H2O as a host and SbCl3 as a dopant. Our experimental results revealed that, the quality of the coated films on the glass depends on process parameters. The effect of annealing temperature, dipping numbe...

متن کامل

Deposition and characterization of SnO2:Sb thin films fabricated by the spray pyrolysis method

In this study, thin films of transparent semiconductor tin oxide doped with antimony impurities on the glass substrates with different concentrations of antimony that have been prepared using spray pyrolysis method. The effects of different concentration of antimony on the structural, optical, and electrical properties of the thin films were investigated. Prepared layers were characterized by X...

متن کامل

Synthesis and Characterization of Sb doping on thick film SnO2 Gas Sensor by Sol-Gel Method

Tin oxide (SnO2) thin films are widely used by solgel method. One of the most important factors that influence the sensitivities of sensing material is its structural properties especially surface morphology. In this work, we present preparation and characterization of undoped and antimony-doped tin oxide (Sb: SnO2) thin film nanostructures for gas sensing applications. The films were character...

متن کامل

Studies on tin oxide films prepared by electron beam evaporation and spray pyrolysis methods

Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated films varied from 2⋅65 × 10 Ω-cm to 3⋅57 × 10 Ω-cm in the temperature ran...

متن کامل

Spectroelectrochemistry of cytochrome c and azurin immobilized in nanoporous antimony-doped tin oxide.

Stable immobilization of two redox proteins, cytochrome c and azurin, in a thin film of highly mesoporous antimony-doped tin oxide is demonstrated via UV-vis spectroscopic and electrochemical investigation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012